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We review concepts, principles, and tools that unify current ap-
proaches to causal analysis, and attend to new challenges presented
by big data. In particular, we address the problem of data-fusion
– piecing together multiple datasets collected under heterogeneous
conditions (i.e., different populations, regimes, and sampling meth-
ods) so as to obtain valid answers to queries of interest. The avail-
ability of multiple heterogeneous datasets presents new opportuni-
ties, since the knowledge that can be acquired from combined data
would not be possible from any individual source alone. However,
the biases that emerge in heterogeneous environments require new
analytical tools. Some of these biases, including confounding, sam-
pling selection, and cross-population biases, have been addressed in
isolation, largely in restricted models. We here present a general,
non-parametric framework for handling these biases and, ultimately,
a theoretical solution to the problem of data-fusion in causal and
counterfactual inference.
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| meta-analysis | heterogeneity | selection bias | data integration

Introduction – Causal Inference and Big Data
The exponential growth of electronically accessible informa-
tion has led some to conjecture that data alone can replace
scientific knowledge in practical decision making. In this pa-
per, we argue that the hypothetico-deductive paradigm that
has been successful in the natural and bio-medical sciences
is still necessary for big data applications, albeit augmented
with new challenges. These challenges turn into opportunities
when viewed from the prism of causal inference, a field that has
scored major advances in the past two decades, by borrowing
two methodological principles from the hypothetico-deductive
paradigm. First, a commitment to understanding what reality
must be like for a statistical routine to succeed and, second, a
commitment to represent reality in terms of data-generating
models, rather than distributions of observed variables.

Encoded as non-parametric structural equations, these
models have led to a fruitful symbiosis between graphs and
counterfactuals and has unified the potential outcome frame-
work of Neyman, Rubin, and Robins with the econometric
tradition of Haavelmo, Marschak, and Heckman. In this sym-
biosis, counterfactuals (or potential outcomes) emerge as nat-
ural byproducts of structural equations and serve to formally
articulate research questions of interest. Graphical models, on
the other hand, are used to encode scientific assumptions in a
qualitative (i.e., non-parametric) and transparent language as
well as to derive the logical ramifications of these assumptions,
in particular, their testable implications and how they shape
behavior under interventions.

In this paper, we build on the semantical clarity that arises
from this unification and give precise meaning to fundamen-
tal concepts such as: units, populations, models, experimental
conditions, sampling selection, counterfactuals, causal effects,
assignment mechanism, and more. These concepts will be de-
fined formally in the next section as part of the Structural
Causal Model (SCM) framework.

One unique feature of the SCM framework, essential in big
data applications, is the ability to encode mathematically the

method by which data are acquired, often referred to gener-
ically as the “design.” This sensibility to design, which we
can label proverbially as not all data are created equal, is il-
lustrated schematically through a series of scenarios depicted
in Fig. 1. Each design (shown at the bottom of the figure)
represents a triplet specifying the population, the regime (ob-
servational versus experimental), and the sampling method by
which each dataset is generated. This formal encoding will al-
low us to delineate the inferences that one can draw from each
design to answer the query of interest (shown at the top).

Consider the task of predicting the distribution of outcomes
Y after intervening on a variable X, written Q = P (Y =
y|do(X = x). Assume that the information available to us
comes from an observational study, in which X, Y , Z, and W
are measured, and samples are selected at random. We ask
for conditions under which the query Q can be inferred from
the information available, which takes the form: P (y, x, z, w),
where Z and W are sets of observed covariates. This repre-
sents the standard task of policy evaluation, where controlling
for confounding bias is the major issue (Task 1, Fig. 1).

Consider now Task 2 in Fig. 1 in which the goal is again to
estimate the effect of the intervention do(X = x) but the data
available to the investigator were collected in an experimental
study in which variable Z, more accessible to manipulation
than X, is randomized. (Instrumental variables are special
cases of this task.) The general question in this scenario is un-
der what conditions can randomization of variable Z be used
to infer how the population would react to interventions over
X. Formally, our problem is to infer P (Y = y|do(X = x))
from P (y, x, w|do(Z = z)). A complete solution to these two
problems will be presented in the respective policy evaluation
section.

In each of the two previous tasks we assumed that a perfect
random sample from the underlying population was drawn,
which may not always be realizable. Task 3 in Fig. 1
represents a randomized clinical trial conducted on a non-
representative sample of the population. Here, the information
available takes the syntactic form P (y, z, w|do(X = x), S = 1),
and possibly P (y, x, z, w|S = 1), where S is a sample selec-
tion indicator, with S = 1 indicating inclusion in the sample.
The challenge is to estimate the effect of interest from this,
far from ideal sampling condition. Formally, we ask when the
target quantity P (y|do(X = x)) is derivable from the available
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information (i.e., sampling-biased distributions). The section
of sample selection bias will present a solution to this problem.

Finally, the previous examples assumed that the popula-
tion from which data were collected is the same as the one
for which inference was intended. This is often not the case
(Task 4 in Fig. 1). For example, biological experiments often
use animals as substitutes for human subjects. Or, in a less
obvious example, data may be available from an experimen-
tal study that took place several years ago, and the current
population has changed in a set S of (possibly unmeasured)
attributes. Our task then is to infer the causal effect at the tar-
get population, P (y|do(X = x), S = s) from the information
available, which now takes the form: P (y, z, w|do(X = x)) and
P (y, x, z, w|S = s). The second expression represents informa-
tion obtainable from non-experimental studies on the current
population, where S = s.

The problems represented in these archetypal examples are
known as confounding bias (Tasks 1,2), sample selection bias
(Task 3), and transportability bias (Task 4). The information
available in each of these tasks is characterized by a different
syntactic form, representing a different “design” and, natu-
rally, each of these designs should lead to different inferences.
What we shall see in subsequent sections of this paper is that
the strategy of going from design to a query is the same across
tasks; it follows simple rules of inference and decides, using
syntactic manipulations, whether the type of data available is
sufficient for the task, and, if so, how.

Empowered by this strategy, the central goal of this paper
will be to explicate the conditions under which causal effects
can be estimated non-parametrically from multiple heteroge-
neous datasets. These conditions constitute the formal basis
for many big data inferences since, in practice, data are never
collected under idealized conditions, ready for use. The re-
maining of the paper is organized as follows. We start by
defining structural causal models (SCMs) and stating the two
fundamental laws of causal inference. We then consider re-
spectively the problem of policy evaluation in observational
and experimental settings, sampling selection bias, and data-
fusion from multiple populations.

Counterfactuals and SCM
At the center of the structural theory of causation lies a “struc-
tural model,” M , consisting of two sets of variables, U and V ,
and a set F of functions that determine or simulate how values
are assigned to each variable Vi ∈ V . Thus, for example, the
equation

vi = fi(v, u)

describes a physical process by which variable Vi is assigned
the value vi = fi(v, u) in response to the current values, v and
u, of all variables in V and U . Formally, the triplet< U, V, F >
defines a SCM, and the diagram that captures the relation-
ships among the variables is called the causal graph G (of
M). The variables in U are considered “exogenous,” namely,
background conditions for which no explanatory mechanism
is encoded in model M . Every instantiation U = u of the
exogenous variables uniquely determines the values of all vari-
ables in V and, hence, if we assign a probability P (u) to U , it
induces a probability function P (v) on V . The vector U = u
can also be interpreted as an experimental “unit” which can
stand for an individual subject, agricultural lot, or time of
day. Conceptually, a unit u = u should be thought of as the
sum total of all relevant factors that govern the behavior of
an individual or experimental circumstances.

Selection
Biased
Data

32 Data from
Experimental
Studies

1 Data from
Observational
Studies

4 Data from
Dissimilar
Populations

Q
Query Q = Causal effects

at a target population

x y w z x y w z x y w z

vP  (  ) (           1) +P v | S = v  do xP (   |    ( )) + 
P  v  do  x    S =    (   |     (  ),        1)

x y w z

obversational studies
v   do z(   |     ( )) P  

Fig. 1. Prototypical counterfactual inferences where the goal is, for example, to

estimate the experimental distribution in a target population (shown at the top). Let

V = {X, Y, Z, W}. There are different designs (bottom) showing that data come

from non-idealized conditions, specifically: (1) from the same population under an

observational regime, P (v); (2) from the same population under an experimental

regime when Z is randomized, P (v|do(z)); (3) from the same population under

sampling selection bias, P (v|S = 1) or P (v|do(x), S = 1); (4) from a differ-

ent population that is submitted to an experimental regime when X is randomized,

P (v|do(x), S = s), and observational studies in the target population.

The basic counterfactual entity in structural models is the
sentence: “Y would be y had X been x in unit (or situation)
U = u,” denoted Yx(u) = y. Letting Mx stand for a modi-
fied version of M , with the equation(s) of set X replaced by
X = x, the formal definition of the counterfactual Yx(u) reads

Yx(u)
∆
= YMx(u). [1]

In words, the counterfactual Yx(u) in model M is defined as
the solution for Y in the “modified” submodel Mx. [1] and [2]
have given a complete axiomatization of structural counterfac-
tuals, embracing both recursive and non-recursive models (see
also [3, Chapter 7]).1 Remarkably, the axioms that charac-
terize counterfactuals in SCM coincide with those that govern
potential outcomes in Rubin’s causal model [5] where Yx(u)
stands for the potential outcome of unit u, had u been assigned
treatment X = x. This axiomatic agreement implies a logical
equivalence of the two systems, namely any valid inference in
one is also valid in the other. The advantages of SCMs lies in
their transparency and representational effectiveness [6].

Eq. (1) implies that the distribution P (u) induces a well de-
fined probability on the counterfactual event Yx = y, written
P (Yx = y), which is equal to the probability that a random
unit u would satisfy the equation Yx(u) = y. By the same rea-
soning, the model < U, V, F, P (u) > assigns a probability to
every counterfactual or combination of counterfactuals defined
on the variables in V .

The two principles of causal inference. Before describing how
the structural theory applies to big data inferences, it will be
useful to summarize its implications in the form of two “prin-
ciples,” from which all other results follow.

Principle 1: “The law of structural counterfactuals.”
Principle 2: “The law of structural independences.”

1The structural definition of counterfactual given in Eq. (1) was first introduced in [4].
2By a path we mean a consecutive edges in the graph regardless of direction. Dependencies among
the U variables are represented by double-arrowed arcs, as in Fig. 3 below.

2 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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The first principle is described in Eq. (1) and instructs us
how to compute counterfactuals and probabilities of counter-
factuals from a structural model. This instruction constitutes
the semantics of counterfactuals, which determines how coun-
terfactual variables are related to observed variables and, con-
versely, how the observed data influence the causal parameters
that we aim to estimate.

Principle 2 defines how structural features of the model en-
tail constraints (e.g., conditional independencies) readable in
the data. Remarkably, regardless of the functional form of
the equations in the model (F ) and regardless of the distribu-
tion of the exogenous variables (U), if the model is recursive,
the distribution P (v) of the endogenous variables must obey
certain conditional independence relations, stated roughly as
follows: whenever sets X and Y are separated by a set Z in
the graph, X is independent of Y given Z in the probability
distribution. This “separation” condition, called d-separation
[7, pp. 16–18], constitutes the link between the causal assump-
tions encoded in the graph (in the form of missing arrows) and
the observed data.

Def inition 1. (d-separation)
A set Z of nodes is said to block a path p if either

1. p contains at least one arrow-emitting node that is in Z
(i.e., −Z →), or

2. p contains at least one collision node that is outside Z
(i.e., → Z ←) and has no descendant in Z.

If Z blocks all paths from set X to set Y , it is said to “d-
separate X and Y,” and then, variables X and Y are indepen-
dent given Z, written X⊥⊥Y |Z. 2

D-separation implies conditional independencies for every
distribution P (v) that can be generated by assigning func-
tions (F ) to the variables in the graph. To illustrate, the
diagram in Fig. 2(a) implies Z1⊥⊥Y |{X,Z3,W2}, because the
conditioning set Z = {X,Z3,W2} blocks all paths beween Z1

and Y . The set Z = {X,Z3,W3} however leaves the path
(Z1 → Z3 ← Z2 → W2 → Y ) unblocked (by virtue of the
converging arrows (collider) at Z3) and, so, the independence
Z1⊥⊥Y |(X,Z3,W3) is not implied by the diagram.

In the sequel, we show how these independencies help us
evaluate the effect of interventions and overcome the problem
of confounding bias. 3 Clearly, any attempt to predict the ef-
fects of interventions from non-experimental data must rely on
causal assumptions. One of the most attractive features of the
SCM framework is that those assumptions are all encoded par-
simoniously in the diagram, thus, unlike “ignorability”-type
assumptions [8, 9], they can be meaningfully scrutinized for
scientific plausibility or be submitted to statistical tests.

Policy Evaluation and the Problem of Confounding
A central question in causal analysis is that of predicting the
results of interventions, such as those resulting from medical
treatments or social programs, which we denote by the symbol
do(x) and define using the counterfactual Yx as4

P (y|do(x))
∆
= P (Yx = y) [2]

Figure 2(b) illustrates the submodel Mx created by the atomic
intervention do(x); it sets the value of X to x and thus removes
the influence (arrow) of {W1, Z3} on X. The set of incoming
arrows towards X is sometimes called the assignment mech-
anism, and may also represent how the decision X = x is
made by an individual in response to natural predilections
(i.e., {W1, Z3}), as opposed to an externally imposed assign-

ment in a controlled experiment. 5 Furthermore, we can sim-
ilarly define the result of stratum-specific interventions by

P (y|do(x), z)
∆
= P (y, z|do(x))/P (z|do(x)) = P (Yx = y|Zx = z)

[3]
P (y|do(x), z) captures the z-specific effect of X on Y , that
is, Y ’s response to setting X to x among those units only for
which Z responds with z. (For pre-treatment Z (e.g., sex,
age, or ethnicity), those units would remain invariant to X
(i.e., Zx = Z). )

Recalling that any counterfactual quantity can be computed
from a fully specified model < U, V, F, P (u) >, it follows that
the interventional distributions defined in Eq. (2) and Eq.(3)
can be computed directly from such a model. In practice,
however, only a partially specified model is available, in the
form of a graph G, and the problem arises whether the data
collected can make up for our ignorance of the functions F
and the probabilities P (u). This is the problem of identi-
fication, which asks whether the interventional distribution,
P (y|do(x)), can be estimated from the available data and the
assumptions embodied in the causal graph.

In parametric settings, the question of identification reduces
to asking whether some model parameter, θ, has a unique so-
lution in terms of the parameters of P . In the nonparametric
formulation, the notion of “has a unique solution” does not
directly apply since quantities such as Q = P (y|do(x)) have
no parametric signature and are defined procedurally by a
symbolic operation on the causal model M (as in Fig. 2(b)).
The following definition captures the requirement that Q be
estimable from the observed distribution and the causal graph:
Def inition 2. (Identifiability) [7, p. 77]
A causal query Q is identifiable from distribution P (v) com-
patible with a causal graph G, if for any two (fully specified)
models M1 and M2 that satisfy the assumptions in G, we have

P1(v) = P2(v)⇒ Q(M1) = Q(M2) [4]

In words, equality in the probabilities P1(v) and P2(v) in-
duced by models M1 and M2, respectively, entails equality in
the answers that these two models give to query Q. When this
happens, Q depends on P (v) and G only, and can therefore be
expressible in terms of the parameters of P (v) (i.e., regardless
of the true underlying mechanisms F and randomness P (u)).

For queries in the form of a do-expression, for example
Q = P (y|do(x), z), identifiability can be decided systemati-
cally using an algebraic procedure known as the do-calculus
[11], to be discussed next. It consists of three inference rules
that permit us to manipulate interventional and observational
distributions whenever certain separation conditions hold in
the causal diagram G.

The rules of do-calculus. Let X, Y , Z, and W be arbitrary
disjoint sets of nodes in a causal DAG G. We denote by GX
the graph obtained by deleting from G all arrows pointing to
nodes in X (e.g., Fig. 2(b)). Likewise, we denote by GX the
graph obtained by deleting from G all arrows emerging from
nodes in X (e.g., Fig. 2(c)). To represent the deletion of both
incoming and outgoing arrows, we use the notation GXZ .

The following three rules are valid for every interventional
distribution compatible with G.
Rule 1 (Insertion/deletion of observations):

P (y|do(x), z, w) = P (y|do(x), w) if (Y⊥⊥Z|X,W )G
X

[5]

3These and other constraints implied by Principle 1 also facilitate model testing and learning [7].
4Alternative definitions of do(x) invoking population averages only are given in [3, p. 24] and [10],
which are also compatible with the results presented in this paper.
5This primitive operator can be used for handling stratum-specific interventions [3, Ch. 4] as well
as to model issues of non-compliance [3, Ch. 8] and compound interventions [3, Ch. 11.4].

Footline Author PNAS Issue Date Volume Issue Number 3
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Rule 2 (Action/observation exchange):

P (y|do(x), do(z), w) = P (y|do(x), z, w) if (Y⊥⊥Z|X,W )G
XZ

[6]

Rule 3 (Insertion/deletion of actions):

P (y|do(x), do(z), w) = P (y|do(x), w) if (Y⊥⊥Z|X,W )G
XZ∗

, [7]

where Z∗ is the set of Z-nodes that are not ancestors of any
W -node in GX .

To establish identifiability of a causal query Q, one needs
to repeatedly apply the rules of do-calculus to Q, until an ex-
pression is obtained which no longer contains a do-operator6;
this renders it estimable from nonexperimental data. The do-
calculus was proven to be complete for queries in the form
Q = P (y|do(x), z) [12, 13], which means that if Q cannot be
reduced to probabilities of observables by repeated applica-
tion of these three rules, Q is not identifiable. We show next
concrete examples of the application of the do-calculus.

Covariate selection: the back-door criterion

Consider an observational study where we wish to find the ef-
fect of treatment (X) on outcome (Y ), and assume that the
factors deemed relevant to the problem are structured as in
Fig. 2(a); some are affecting the outcome, some are affect-
ing the treatment, and some are affecting both treatment and
response. Some of these factors may be unmeasurable, such
as genetic trait or lifestyle, while others are measurable, such
as gender, age, and salary level. Our problem is to select a
subset of these factors for measurement and adjustment such
that if we compare treated vs. untreated subjects having the
same values of the selected factors, we get the correct treat-
ment effect in that subpopulation of subjects. Such a set of
factors is called a “sufficient set,” “admissible set” or a set
“appropriate for adjustment” (see [14, 6]). The following cri-
terion, named “back-door” [15], provides a graphical method
of selecting such a set of factors for adjustment.

Def inition 3. (admissible sets—the back-door criterion)
A set Z is admissible (or “sufficient”) for estimating the causal
effect of X on Y if two conditions hold:
1. No element of Z is a descendant of X.
2. The elements of Z “block” all “back-door” paths from X to

Y – i.e., all paths that end with an arrow pointing to X.

Based on this criterion we see, for example that, in Fig. 2,
the sets {Z1, Z2, Z3}, {Z1, Z3}, {W1, Z3}, and {W2, Z3} are
each sufficient for adjustment, because each blocks all back-
door paths between X and Y . The set {Z3}, however, is not
sufficient for adjustment because it does not block the path
X ←W1 ← Z1 → Z3 ← Z2 →W2 → Y .

The intuition behind the back-door criterion is simple. The
back-door paths in the diagram carry the “spurious associa-
tions” from X to Y , while the paths directed along the arrows
from X to Y carry causative associations. If we remove the
latter paths as shown in Fig. 2(c), checking whether X and
Y are separated by Z amounts to verifying that Z blocks all
spurious paths. This ensures that the measured association
between X and Y is purely causal, namely, it correctly rep-
resents the causal effect of X on Y . Conditions for relaxing
restriction 1 are given in [3, p. 338][16, 17]7.

The implication of finding a sufficient set, Z, is that stratify-
ing on Z is guaranteed to remove all confounding bias relative
to the causal effect of X on Y . In other words, it renders the
effect of X on Y identifiable, via the adjustment formula8

P (Y = y|do(X = x)) =
X
z

P (y|x, Z = z)P (Z = z) [8]

(b)(a) (c)

Z1 Z2

W2

W3

W1
Z3

Z1 Z2

W2

W3

W1
Z3

Y
X

Z1 Z2

W2

W1
Z3

Y
X = x

Y
X

W3

Fig. 2. (a) Graphical model illustrating d-separation and the back-door criterion.

U terms are not shown explicitly. (b) Illustrating the intervention do(X = x) with

arrows towards X cut. (c) Illustrating the spurious paths, which pop out when we cut

the outgoing edges from X , and need to be blocked if one wants to use adjustment.

Since all factors on the right-hand side of the equation are es-
timable (e.g., by regression) from non-experimental data, the
causal effect can likewise be estimated from such data with-
out bias. Eq. (8) differs from the conditional distribution of
Y given X, which can be written as

P (Y = y|X = x) =
X
s

P (y|x, Z = z)P (Z = z|x); [9]

the difference between these two distributions defines con-
founding bias.

Moreover, the back-door criterion implies an independence
known as “conditional ignorability” [8], X⊥⊥Yx|Z, and pro-
vides therefore the scientific basis for most inferences in the
potential outcome framework. For example, the set of covari-
ates that enter “propensity score” analysis [8] must constitute
a back-door sufficient set, else confounding bias will arise.

The back-door criterion can be applied systematically to
diagrams of any size and shape, thus freeing analysts from
judging whether “X is conditionally ignorable given Z,” a
formidable mental task required in the potential-outcome
framework. The criterion also enables the analyst to search for
an optimal set of covariates—namely, a set, Z, that minimizes
measurement cost or sampling variability [18, 19].

Despite its importance, adjustment for covariates (or for
propensity scores) is only one tool available for estimating the
effects of interventions in observational studies; more refined
strategies exist which go beyond adjustment. For instance,
assume that only variables {X,Y,W3} are observed in Fig.
2(a), so only the observational distribution P (x, y, w3) may
be estimated from the samples. In this case, conditional ig-
norability does not hold, but an alternative strategy known as
the front-door criterion [7, pp. 83] can be employed to yield
identification. Specifically, the calculus permits rewriting the
experimental distribution as:

P (Y = y|do(X = x)) =
X
w3

P (w3|x)
X
x′

P (y|x′, w3)P (x′),

[10]
which is almost always different than Eq. (8).

Finally, in case W3 is also not observed, only the observa-
tional distribution P (x, y) can be estimated from the samples,
and the calculus will discover that no reduction is feasible,
which implies (by virtue of its completeness) that the target
quantity is not identifiable (without further assumptions).

Identification through Auxiliary Experiments

In many applications, it is not uncommon that the quantity
Q = P (y|do(x)) is not identifiable from the observational data

6Such derivations are illustrated in graphical details in [3, p. 87] and in the next section.
7 In particular, the criterion devised by [17] simply adds to Condition 2 of Definition 3 the require-
ment that X and its nondescendants (in Z) separate its descendants (in Z) from Y .
8Summations should be replaced by integration when applied to continuous variables.

4 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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alone. Imagine a researcher interested in assessing the effect
(Q) of cholesterol levels (X) on heart disease (Y ), assuming
data about subjects diet (Z) is also collected (Fig. 3(a)). In
practice, it is infeasible to control subjects cholesterol level by
intervention, so P (y|do(x)) cannot be obtained from a ran-
domized trial. Assuming, however, that an experiment can be
conducted in which Z is randomized, would Q be computable
given this additional piece of experimental information?

This question represents what we called Task 2 in Fig. 1,
and leads to a natural extension of the identifiability problem
(def. 2) in which, in addition to the standard input (P (v) and
G), an interventional distribution P (v|do(z)) is also available
to help establishing Q = P (y|do(x)). This task can be seen as
the non-parametric version of identification with instrumental
variables and was named z-identification in [20].

Using the do-calculus and the assumptions embedded in Fig.
3(a), it can readily be shown that the target query Q can be
transformed to read:

P (Y = y|do(X = x)) = P (y, x|do(z))/P (x|do(z)), [11]

for any level Z = z. Since all do-terms in Eq. (11) apply only
to Z, Q is estimable from the available data. In general, it
can be shown [20] that z-identifiability is feasible if and only
if X intercepts all directed paths from Z to Y and P (y|do(x))
is identifiable in GZ .

Fig. 3(b) demonstrates this graphical criterion. Here Z1

can serve as auxiliary variable because, (1) there is no di-
rected path from Z1 to Y in GX , and, (2) Z2 is a sufficient set
in GZ1

. The resulting expression for Q becomes:

P (Y = y|do(X = x)) =
X
z1

P (y|x, do(z1), z2)P (z2|x, z1)

[12]
The first factor is estimable from the experimental dataset
and the second factor from the observational dataset (e.g., by
regression-based methods).

Fig. 3(c) and (d) demonstrate negative examples in which Q
is not estimable even when both distributions (observational
and experimental) are available; each model violates the nec-
essary conditions stated above.

Summary Result 1. (Identification in Policy Evaluation) The anal-
ysis of policy evaluation problems has reached a fairly satis-
factory state of maturity. We now possess a complete solution
to the problem of identification, entailing the following:

• both graphical and algorithmic criteria for deciding identi-
fiability;

• automated procedures for extracting each and every identi-
fiable estimand;

• extensions that apply to models of any size or shape, in-
cluding those invoking sequential dynamic decisions with
unmeasured confounders.

These results were developed in several stages over the past 20
years [15, 11, 21, 13, 20].

Sample Selection Bias
In this section, we consider the bias associated with the data-
gathering process, as opposed to confounding bias that is as-
sociated with the treatment assignment mechanism. Sample
selection bias (or selection bias for short) is induced by pref-
erential selection of units for data analysis, usually governed
by unknown factors including treatment, outcome, and their
consequences, and represents a major obstacle to valid statis-
tical and causal inferences. For instance, in a typical study of

12

Y

X
Z

Y

X
Z

(b)(a) (c) (d)

ZZ

X

Y Y

Z
X

Fig. 3. Graphical models illustrating identification of Q = P (y|do(x)) through

the use of experiments over an auxiliary variable Z. Identifiability follows from

P (x, y|do(Z = z)) in (a), and it also requires P (v) in (b). Identifiability of

Q fails in (c) because Q is not identifiability in GZ , and is also not possible in (d)

because there is a directed path not blockable by X from Z to Y .

the effect of training program on earnings, subjects achieving
higher incomes tend to report their earnings more frequently
than those who earn less, resulting in biased inferences.

Selection bias challenges the validity of inferences in several
tasks in Artificial Intelligence [22, 23] and Statistics [24, 25]
as well as in the empirical sciences (e.g., Genetics [26, 27],
Economics [28, 29], and Epidemiology [30, 31]).

To illustrate the nature of preferential selection, consider
the data-generating model in Fig. 4(a) in which X represents
a treatment, Y represents an outcome, and S is a special (in-
dicator) variable representing entry into the data pool – S = 1
means that the unit is in the sample, S = 0 otherwise. If our
goal is, for example, to compute the population-level experi-
mental distribution Q = P (y|do(x)), and the samples available
are collected under preferential selection, only P (y, x|S = 1) is
accessible for use. Under what conditions can Q be recovered
from data available under selection bias?

In the model G in Fig. 4(b) the selection process is
treatment-dependent (i.e., X → S), and the selection mecha-
nism S is separated from Y by X, hence, P (y|x) = P (y|x, S =
1). Moreover, given that X and Y are unconfounded, we
can rewrite the l.h.s. as P (y|x) = P (y|do(x)), it follows
that the experimental distribution is recoverable and given
by P (y|do(x)) = P (y|x, S = 1) [32]. On the other hand, if the
selection process is also outcome-dependent (Fig. 4(a)), S is
not separable from Y by X in G, and Q is not recoverable by
any method (without stronger assumptions) [33].

In practical settings, however, the data-gathering process
may be embedded in more intricate scenarios as shown in Fig.
4(c-f), where covariates such as age, sex, socio-economic sta-
tus also affect the sampling probabilities. In the model in
Fig. 4(c), for example, W1 (sex) is a driver of the treatment
while also affecting the sampling process. In this case, both
confounding and selection biases need to be controlled for. We
can see based on Def. 3 that {W1,W2}, {W1,W2, Z}, {W1, Z},
{W2, Z}, and {Z} are all back-door admissible sets, so proper
for controlling confounding bias. However, only the set {Z}
is appropriate for controlling for selection bias. The reason is
that when using the adjusting formula (Eq. (8)) with any set,
say T , the prior distribution P (t) also needs to be estimable,
which is clearly not feasible for sets different than {Z} (the
only set independent of S). The proper adjustment in this case
would be written as P (y|do(x)) =

P
z P (y|x, z, S = 1)P (z|S =

1), where both factors are estimable from the biased dataset.
If we apply the same rationale to Fig. 4(d) and search for

a set Z that is both admissible for adjustment and also avail-
able from the biased dataset, we will fail. In a big data reality,
however, additional datasets with measurements at the popu-

9 These conditions extend the backdoor criterion to allow descendants of X to be part of Z [17].

Footline Author PNAS Issue Date Volume Issue Number 5
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lation level (over subsets of the variables) may be available to
help computing these effects. For instance, P (age, sex, race)
is usually estimable from census data without selection bias.

Definition 4 (below) provides a simple extension of the back-
door condition which allow us to control both selection and
confounding biases by the following formula [33]:

P (y|do(x)) =
X
z

P (y|x, z, S = 1)P (z), [13]

where Z is a set of covariates that obeys four conditions. Con-
ditions (i-ii) assure that Z is backdoor admissible 9, condition
(iii) acts to separate the sampling mechanism S from Y , and
condition (iv) guarantees that Z is measured in both popula-
tion level data and biased data.

Def inition 4. (Selection-backdoor criterion [33]) Let a set Z of
variables be partitioned into Z+ ∪ Z− such that Z+ contains
all non-descendants of X and Z− the descendants of X. Z
is said to satisfy the selection backdoor criterion (s-backdoor,
for short) relative to an ordered pairs of variables (X,Y ) and
an ordered pair of sets (M,T ) in a graph Gs if Z+ and Z−

satisfy the following conditions:

(i) Z+ blocks all back door paths from X to Y ;
(ii) X and Z+ block all paths between Z− and Y , namely,

(Z−⊥⊥Y |X,Z+);
(iii) X and Z block all paths between S and Y , namely,

(Y⊥⊥S|X,Z);
(iv) Z ∪ {X,Y } ⊆M , and Z ⊆ T , where M and T represent

measurements taken in the biased and unbiased studies, re-
spectively.

To illustrate the use of this criterion, note that any one of the
sets {T1, Z3}, {Z1, Z3}, {Z2, Z3}, {W2, Z3} in Fig. 4(d) satis-
fies conditions (i)-(ii) of Def. 4. However, the first three sets
clearly do not satisfy condition (iii), but {W2, Z3} does (since
Y⊥⊥S|{W2, Z3} in G). If census data are available with mea-
surements of {W2, Z3}, condition (iv) will be satisfied, and the
experimental distribution P (y|do(x)) is estimable through the
expression

P
w2,z3

P (y|x,w2, z3, S = 1)P (w2, z3). The first
factor can be estimated from the biased dataset and the sec-
ond from the population level (unbiased) dataset.

We note that s-backdoor is a sufficient though not necessary
condition for recoverability. In Fig. 4(e), for example, condi-
tion (i) is never satisfied. Nevertheless, a do-calculus deriva-
tion allows for the estimation of the experimental distribu-
tion even without an unbiased dataset [37], leading to the ex-
pression

P
w1

(P (v|S = 1)/P (w2|w1, S = 1))/
P
y,w1

(P (v|S =

1)/P (w2|w1, S = 1)), for any level W2 = w2.

The generalizabiity of clinical trials. The simple model of Fig.
4(f) illustrates a common pattern that assists in generaliz-
ing experimental findings from clinical trials. In such trials,
confounding need not be controlled for and the major task is
to generalize from non-representative samples (S = 1) to the
population at large.

This disparity is indeed a major threat to the validity of
randomized trials. Since participation cannot be mandated,
we cannot guarantee that the study population would be the
same as the population of interest. Specifically, the study pop-
ulation may consist of volunteers, who respond to financial and
medical incentives offered by pharmaceutical firms or exper-
imental teams, so, the distribution of outcomes in the study
may differ substantially from the distribution of outcomes un-
der the policy of interest.

Bearing in mind that we are in a big data context, it is not
unreasonable to assume that both P (y, z|do(x), S = 1) and

1T

W1 W2
3Z

2Z

S

W3 YX

1Z
(d)

S

YX Z

(f)

S

YX

(a)
W1

S

W2

YX

Z
(c)

S

YX

(b)

W2

S

W3

(e)

YX

W1

Fig. 4. Canonical models where selection is treatment-dependent in (a,b) and also

outcome-dependent in (a). More complex models in which {W1, W2} and {Z} are

sufficient for adjustment, but only the latter is adequate for recovering from selection

bias (c). There is no sufficient set for adjustment without external data in (d,e,f). (d)

Example of s-backdoor admissible set. (e,f) Structures with no s-admissible sets that

require more involved recoverability strategies involving post-treatment variables.

P (x, z, y) are available, and the following derivation shows how
the target query in the model of Fig. 4(f) can be transformed
to match these two datasets:

P (y|do(x)) =
X
z

P (y|do(x), z)P (z|do(x))

=
X
z

P (y|do(x), z)P (z|x)

=
X
z

P (y|do(x), z, S = 1)P (z|x) [14]

The two factors in the final expression are estimable from
the available data; the first from the trial’s (biased) dataset,
and the second from the population level dataset.

This example demonstrates the important role that post-
treatment variables (Z) play in facilitating generalizations
from clinical trials. Previous analyses [9, 34, 35] have in-
variably relied on an assumption called “S-ignorability,” i.e.,
Yx⊥⊥Z|S, which states that the potential outcome Yx is inde-
pendent of the selection mechanism S in every stratum Z = z.
When Z satisfies this assumption, generalizabiity can be ac-
complished by reweighing (or recalibrating) P (z). Recently,
however, it was shown that s-ignorability is rarely satisfied by
post-treatment variables and, even when it does, reweighting
will not give the correct result [36]. 10

The derivation of Eq. (14) demonstrates that post-
treatment variables can nevertheless be leveraged for the task
albeit through non-conventional re-weighting formulas, which
can be derived systematically by the do-calculus [37].

Summary Result 2. (Recoverability from Selection Bias) a

• The s-backdoor criterion (Def. 4) provides a sufficient con-
dition for simultaneous recovery from both confounding and
sampling selection bias.

• In clinical trials, causal effects can be recovered from se-
lection bias through systematic derivations in do-calculus,
leveraging both pre-treatment and post-treatment variables.

• More powerful recoverability methods have been developed
for special classes of models [38, 33, 37].

10 In general, the language of ignorability is too coarse for handling post-treatment variables.

6 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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Transportability and the Problem of Data-fusion
In this section, we consider Task 4 (Fig. 1), the problem of
extrapolating experimental findings across domains (i.e., set-
tings, populations, environments) that differ both in their dis-
tributions and their inherent causal characteristics. This prob-
lem, called “transportability” in [39], lies at the heart of ev-
ery scientific investigation since, invariably, experiments per-
formed in one environment are intended to be used elsewhere,
where conditions are likely to be different. Special cases of
transportability can be found in the literature under different
rubrics such as “external validity” [40, 41], “heterogeneity”
[42]), “quasi-experiments” [43, Ch. 3]; [44]. We formalize the
transportability problem in non-parametric settings and show
that despite glaring differences between the two populations, it
might still be possible to infer causal effects at the target pop-
ulation by borrowing experimental knowledge from the source
populations.

For instance, assume our goal is to infer the casual effect
at one population from experiments conducted in a different
population after noticing that the two age distributions are
different. To illustrate how this task should be formally tack-
led, consider the data-generating model in Fig. 5(a) in which
X represents a treatment, Y represents an outcome, Z repre-
sents age, and S (graphically depicted as a square) is a special
variable representing the set of all unaccounted factors (e.g.,
proximity to the beach) that creates differences in Z (age in
this case), between the source (π) and target (π∗) popula-
tions. Formally, conditioning on the event S = s∗ would mean
that we are considering population π∗, otherwise population
π is being considered. This graphical representation is called
“selection diagrams”. 11

Our task is then to express the query Q = P (y|do(x), S =
s∗) = P ∗(y|do(x)) in terms of the experiments conducted in
π and the observations collected in π∗, that is, P (y, z|do(x))
and P ∗(y, x, z). Conditions for accomplishing this task were
derived in [39, 45, 46]. To illustrate how these conditions work
in model of Fig. 5(a), note that the target quantity can be
re-written as follows:

Q =
X
z

P (y|do(x), S = s∗, z)P (z|S = s∗, do(x))

=
X
z

P (y|do(x), z)P (z|S = s∗, do(x))

=
X
z

P (y|do(x), z)P (z|S = s∗)

=
X
z

P (y|do(x), z)P ∗(z), [15]

where the first line of the derivation follows after condition-
ing on Z, the second line from the independence (S⊥⊥Y |Z)G

X

(called s-admissibility), the third line from the third rule of the
do-calculus, and the last line from the definition of S-node.
Eq. (15) is called a transport formula because it explicates
how experimental findings in π are transported over to π∗;
the first factor is estimable from π and the second from π∗.

Consider Fig. 5(b) where Z now corresponds to “language
skills” (a proxy for the original variable, age, which is un-
measured). A simple derivation yields a different transport
formula [39], namely

Q = P (y|do(x)), [16]

In a similar fashion, one can derive a transport formula for
Fig. 5(c) in which Z represents a post-treatment variable (e.g.
“biomarker”), giving

Q =
X
z

P (y|do(x), z)P ∗(z|x), [17]

S

S

Z

X Y

S

S

X Y

(c)(a) (d)

X Y

Z

Z

(b)

Z

X Y

Fig. 5. Selection diagrams depicting differences between source and target pop-

ulations. In (a), the two populations differ in age (Z) distributions (so S points to

Z). In (b), the populations differs in how reading skills (Z) depends on age (an un-

measured variable, represented by the hollow circle) and the age distributions are the

same. In (c), the populations differ in how Z depends on X . In (d), the unmeasured

confounder (bidirected arrow) between Z and Y precludes transportability.

The transport formula in Eq. (17) states that to estimate the
causal effect of X on Y in the target population π∗, we must
estimate the z-specific effect P (y|do(x), z) in π and average it
over z, weighted by the conditional probability P ∗(z|x) esti-
mated at π∗ (instead of the traditional P ∗(z)). Interestingly,
Fig. 5(d) represents a scenario in which Q is not transportable
regardless of the number of samples collected.

The models in Fig. 5 are special cases of the more gen-
eral theme of deciding transportability under any causal dia-
gram. It can be shown that transportability is feasible if and
only if there exists a sequence of rules that transforms the
query expression Q = P (y|do(x), s∗) into a form where the
do-operator is separated from the S-variables [45]. A com-
plete and effective procedure was devised by [45, 46], which
given any selection diagram, decides if such a sequence exists
and synthesizes a transport formula whenever possible. Each
transport formula determines what information need to be ex-
tracted from the experimental and observational studies and
how they ought to be combined to yield an estimate of Q.

Transportability from multiple populations. A generalization
of transportability theory to multi-environments when limited
experiments are available in each environments led to a princi-
pled solution to the data-fusion problem. Data-fusion aims to
combining results from many experimental and observational
studies, each conducted on a different population and under
a different set of conditions, so as to synthesize an aggregate
measure of targeted effect size that is “better,” in some sense,
than any one study in isolation. This fusion problem has re-
ceived enormous attention in the health and social sciences,
and is typically handled by “averaging out” differences (e.g.,
using inverse-variance weighting), which, in general, tends to
blur, rather than exploit design distinctions among the avail-
able studies.

Fortunately, using multiple “selection diagrams” to encode
commonalities among studies, [47] “synthesized” an estimator
that is guaranteed to provide unbiased estimate of the desired
quantity, whenever such estimate exists. It is based on infor-
mation that each study shares with the target environment.
Remarkably, a consistent estimator can be constructed from
multiple sources with limited experiment even in cases where
it is not constructable from any subset of sources considered
separately [48]. We summarize these results as follows:

Summary Result 3. (Transportability and Data-fusion) We now pos-
sess complete solutions to the problem of transportability and
data-fusion, which entail the following:

• Graphical and algorithmic criteria for deciding transporta-
bility and data-fusion in non-parametric models;

11Each diagram shown in Fig. 5 constitutes indeed the overlapping of the causal diagrams of the
source and target populations. More formally, each variable Vi should be supplemented with an
S-node whenever the underlying (unobserved) function (mechanism) fi or background factor Ui
is different between π and π∗ . If knowledge about commonalities and disparities is not available,
transport across domains cannot, of course, be justified.

Footline Author PNAS Issue Date Volume Issue Number 7
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• Automated procedures for extracting transport formulae
specifying what needs to be collected in each of the underly-
ing studies;

• An assurance that, when the algorithm fails, fusion is in-
feasible regardless of the sample size.

For detailed discussions of these results, see [39, 46, 48].

Conclusion
The unification of the structural, counterfactual, and graph-
ical approaches to causal analysis gave rise to mathematical
tools that have helped to resolve a wide variety of causal infer-
ence problems, including the control of confounding, sampling
bias, and cross-population bias. In this paper, we presented
a general approach to these problems, based on a syntactic
transformation of the query of interest into a format derivable
from the available information. Tuned to nuances in design,

this approach enables us to address a crucial problem in big
data applications: the need to combine datasets collected un-
der heterogeneous conditions, so as to synthesize consistent
estimates of causal effects in a target population. As a by-
product of this analysis, we arrived at solutions to two other
long-held problems: Recovery from sampling selection bias
and generalization of randomized clinical trials. We hope that
the framework laid out in this paper will stimulate further re-
search to enhance the arsenal of techniques for drawing causal
inferences from big data.
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